Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals.
نویسندگان
چکیده
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.
منابع مشابه
Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals
We demonstrate fabrication of novel magnetically controllable photonic crystals formed through the self-assembly of highly charged, monodisperse superparamagnetic colloidal spheres. These superparamagnetic monodisperse charged polystyrene particles containing nanoscale iron oxide nanoparticles were synthesized through emulsion polymerization. They self-assemble into crystalline colloidal arrays...
متن کاملSynthesis of Highly Charged, Monodisperse Polystyrene Colloidal Particles for the Fabrication of Photonic Crystals.
We have developed a series of emulsion polymerization recipes for the synthesis of highly charged, monodisperse polystyrene colloids of diameters between 100-400 nm. These spherical colloidal particles were crosslinked with divinyl benzene and functionalized with 1-allyloxy-2-hydroxypropane sulfonate. These highly charged, monodisperse colloidal particles readily self-assemble into robust three...
متن کاملMesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals.
We report here the first synthesis of mesoscopic, monodisperse particles which contain nanoscopic inclusions of ferromagnetic cobalt ferrites. These monodisperse ferromagnetic composite particles readily self-assemble into magnetically responsive photonic crystals that efficiently Bragg diffract incident light. Magnetic fields can be used to control the photonic crystal orientation and, thus, t...
متن کاملEmulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-a...
متن کاملMicrowave-assisted self-organization of colloidal particles in confining aqueous droplets.
Monodisperse aqueous emulsion droplets encapsulating colloidal particles were produced in the oil phase, and controlled microwave irradiation of the aqueous drop phase created spherical colloidal crystals by so-called evaporation-induced self-organization of the colloidal particles. Unlike usual colloidal crystals, colloidal crystals in spherical symmetry (or photonic balls) possessed photonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 25 شماره
صفحات -
تاریخ انتشار 2004